Joint Packing Densities and the Great Limit Shape

(layered version)

AMS - Albany, October 20, 2024

Walter Stromquist Bryn Mawr College mail@walterstromquist.com

Outline

What does the shape represent?

1D -- 2D -- 6D -- 4D -- 3D

What shape is it?

Side view

Cross sections -- Front, Back, Below

Sides

Mysterious Gaps

Packing Density

If $\sigma \in S_k$ (the "pattern") and $\pi \in S_n$, then the *packing density of* σ *in* π is

$$\delta_{\sigma}(\pi) = \frac{\text{the number of occurrences of } \sigma \text{ in } \pi}{\binom{n}{k}}.$$

What values can occur? We care about the limit as $|\pi| \to \infty$.

Packing Density -- Example

Joint Packing Densities

The *joint packing density* of two patterns, say 123 and 321, is a pair of numbers:

 $(\delta_{123}(\pi), \delta_{321}(\pi)).$

What values can occur for this pair?

We know that (in the limit as $|\pi| \to \infty$) these densities satisfy

$$\delta_{123} + \delta_{321} \ge \frac{1}{4}.$$

Either coordinate can be zero, but the coordinates can't both be close to 0.

Joint Packing Densities

Example: $\pi \in S_{20}$

$$\delta_{123} = \frac{356}{1140} \approx 0.312$$
$$\delta_{321} = \frac{112}{1140} \approx 0.098$$

 $(\delta_{123}(\pi), \delta_{321}(\pi)) = (0.312, 0.098).$

Joint Packing Densities

Example:

$$\delta_{123} = \frac{37}{125}$$
$$\delta_{321} = \frac{16}{125}$$

(δ_{123} , δ_{321})= (0.296, 0.128).

WHICH PAIRS CAN ARISE IN THIS WAY?

Joint Packing Density for δ_{123} and δ_{321}

This diagram and proof of its correctness are due to Sergi Elizalde and his collaborators.

Joint Packing Density for δ_{123} and δ_{231}

Joint Packing Density for δ_{123} and δ_{231}

Which vectors

$$v = (\delta_{123}, \delta_{132}, \delta_{213}, \delta_{231}, \delta_{312}, \delta_{321}) \in \mathbb{R}^6$$

can occur as a limit of vectors

$$(\delta_{123}(\pi_i), \ \delta_{132}(\pi_i), \ \delta_{213}(\pi_i), \ \delta_{231}(\pi_i), \ \delta_{312}(\pi_i), \ \delta_{321}(\pi_i))$$

for a sequence of permutations π_1 , π_2 , π_3 , ... of increasing size?

Packing Vector

	•	•	•••	•	•	•	
Pattern	123	132	213	231	312	321	
Number of occurrences	356	448	224	0	0	112	total 1140
Fraction of occurrences	.312	.393	.197	0	0	.098	

Packing Vector: (.312, .393, .197, 0, 0, .098)

Packing Vector --- Permuton

Example:

	•	•	•	•	•	•
Pattern	123	132	213	231	312	321
Number of occurrences						
Fraction of occurrences	.296	.384	.192	0	0	.128

Packing Vector: (.296, .384, .192, 0, 0, .128)

Which vectors

$$\nu \; = \; \left(\; \delta_{123}, \; \delta_{132}, \; \delta_{213}, \; \delta_{231}, \; \delta_{312}, \; \delta_{321} \; \right) \; \in R^6$$

can occur as a limit of vectors

 $(\delta_{123}(\pi_i), \delta_{132}(\pi_i), \delta_{213}(\pi_i), \delta_{231}(\pi_i), \delta_{312}(\pi_i), \delta_{321}(\pi_i))$ for a sequence of permutations $\pi_1, \pi_2, \pi_3, \dots$ of increasing size?

The answer is a compact subset of R^6 .

Which vectors

$$\nu \; = \; (\; \delta_{123}, \; \delta_{132}, \; \delta_{213}, \; \delta_{231}, \; \delta_{312}, \; \delta_{321} \;) \; \in R^6$$

can occur as a limit of vectors

 $(\delta_{123}(\pi_i), \delta_{132}(\pi_i), \delta_{213}(\pi_i), \delta_{231}(\pi_i), \delta_{312}(\pi_i), \delta_{321}(\pi_i))$ for a sequence of permutations $\pi_1, \pi_2, \pi_3, \dots$ of increasing size?

The answer is a compact subset of R^6 .

We can understand the Great Limit Set in terms of its PROJECTIONS and CROSS SECTIONS.

The solution we saw to the $(\delta_{123}, \delta_{321})$ problem is an example of a projection of the 5-d set onto a 2-d plane.

The Layered Version

Today we will deal with the special case of LAYERED PERMUTATIONS.

A LAYERED PERMUTATION is one that contains no 231 or 312 patterns.

In dealing with layered permutations, we will omit those components of the packing vector, which becomes

$$v = (\delta_{123}, \delta_{132}, \delta_{213}, \delta_{321}) \in \mathbb{R}^4.$$

Which of these vectors can be limits of packing vectors of layered permutations?

The answer is a compact subset of R⁴, contained in the 3-d standard simplex.

Layered Permutons

 $\langle x_1, x_2, x_3 \rangle$ = sizes of DOWN boxes, in

decreasing order. In this case, $\left(\frac{1}{3}, \frac{1}{9}, \frac{1}{9}\right)$.

For δ_{123} and δ_{321} , only the *x*'s matter---NOT their order, or anything about the UP boxes.

$$\delta_{123} = 1 - 3\sum_{i} x_{i}^{2} + 2\sum_{i} x_{i}^{3}$$
$$\delta_{321} = \sum_{i} x_{i}^{3}$$

For δ_{132} and δ_{213} , order and placement matter.

The coordinate system

= home of the limiting shape

Outline

What does the shape represent?

1D -- 2D -- 6D -- 4D -- 3D

What shape is it?

Side view

Cross sections -- Front, Back, Below

Sides

Mysterious Gaps

Layered Version: The Main Diagram

Layered Version: The Main Diagram

Layered Version: The Main Diagram

 δ_{32} δ_{123}

Every path in this set is the image of a continuous path among permutons. Proof: Each point in the blue region corresponds to a unique permuton whose decreasing layers have sizes w, wz, ..., wz, (1-nw)z for w, z in [0,1].

Outline

What does the shape represent?

1D -- 2D -- 6D -- 4D -- 3D

What shape is it? Side view Cross sections -- Front, Back, Below Sides Mysterious Gaps

The Cross Sections

If we knew --- for every point in the main diagram --- what are the possible values of $(\delta_{132}, \delta_{213})$, then we would know the entire shape.

Because $\delta_{213} = 1 - \delta_{123} - \delta_{321} - \delta_{132}$, and both δ_{123} and δ_{321} are given by the point we have chosen, we just need to know the possible values of δ_{132} .

Start with points on the boundary of the main diagram.

The cross section at (1/2,1/8)

Suppose $\delta_{123} = 1/2$ and $\delta_{321} = 1/8$. Those values define a point on the upper boundary of the main diagram. They leave 3/8 for δ_{132} and δ_{213} . Fact: δ_{132} can take any value in [0, 3/8].

has packing vector (1/2, 3/8, 0, 1/8).

has packing vector (1/2, 3/16, 3/16, 1/8).

has packing vector (1/2, 0, 3/8, 1/8).

The "up" bits give us slack to adjust δ_{132} to any value we like.

An easy cross section

The top surface: Just the easy cross sections

Top and Sides

Flip it over...

Outline

What does the shape represent?

1D -- 2D -- 6D -- 4D -- 3D

What shape is it?

Side view

Cross sections -- Front, Back, Below

Sides

Mysterious Gaps

Top and Sides

How many blocks at each point of the side?

Outline

What does the shape represent?

1D -- 2D -- 6D -- 4D -- 3D

What shape is it?

Side view

Cross sections -- Front, Back, Below

Sides

Mysterious Gaps

