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Abstract

David Gale asked in [8, 1993] whether, when a pie is to be divided among
n claimants, it is always possible to find a division that is both envy free and
undominated. The pie is cut along n radii, and the claimants’ preferences are
described by different measures on the cake.

We answer Gale’s question in the negative for n = 3 by exhibiting three measures
for which no division of the pie can be both envy free and undominated. The
measures are absolutely continuous with respect to each other and with respect to
area.

1 Cutting pies

Mathematicians study cake cutting as a metaphor for more general fair division problems.
Some papers on cake cutting are [7] and [11], and many more references can be found
in the recent books by Brams and Taylor [5], Robertson and Webb [10], Moulin [9], and
Barbanel [1]. A recent survey is by Brams [2].

A cake is cut by planes parallel to a given plane. It can therefore be represented as
an interval [0,m] with possible cuts corresponding to points in [0,m] and possible pieces
to subintervals [a, b] ⊆ [0,m]. We assume n players (claimants) whose preferences are
represented by nonatomic measures on the interval. Letting vi stand for the i-th player’s
measure, we write vi(S) or vi([a, b]) for the i-th player’s valuation of the piece S = [a, b].
We always assume that vi(S) = 0 if S has length 0.

An allocation of pieces to players is called envy free if vi(Si) ≥ vi(Sj) for every i and
j, where Si represents the i-th player’s piece. This means that no player prefers another
player’s piece to its own. A player i is satisfied (non-envious) if vi(Si) ≥ vi(Sj) for all j, so
that an allocation is envy free precisely when all players are satisfied. An allocation {Si}
is dominated by another allocation {Ti} if vi(Ti) ≥ vi(Si) for each i with strict inequality
for at least one i. This means that the allocation {Ti} makes at least one player better
off without making any player worse off. We say that an allocation is undominated (or,
synonymously, efficient or Pareto optimal) if it is not dominated by any other allocation.

Following [14] we call an allocation fair if it is both envy free and undominated. Note
that both of these properties are defined without interpersonal comparisons of values.
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An early result for cakes [11] is that given n players with nonatomic measures, it is
always possible to find an envy-free allocation using only n − 1 cuts. Gale showed in [8]
that an envy-free allocation with n − 1 cuts is necessarily undominated. The lesson of
this cake-cutting model, then, is that fair divisions are always possible.

Pies are an alternative metaphor. Pies differ from cakes in that they are cut along
radii; that is, along straight lines from the center. While we can still represent a pie by
an interval [0,m], we now consider the endpoints to be identified, so that the interval
represents a circle that we may visualize as the circumference of the pie. A piece of pie is
represented by a subinterval [a, b], but we now interpret these endpoints mod m; that is,
a+m represents the same point as a. We allow the notation [a, b] with b < a, interpreting
it as [a, b + m]; this typically represents a piece that spans the endpoints, and would not
be a single piece if it were part of a cake. The notation [a, a] always represents an empty
piece, while [a, a + m] always represents the whole pie. We continue to represent the
players’ preferences by nonatomic measures vi.

There still exist envy-free divisions. In fact, there are many more of them, because
we can cut the pie at an arbitrary point and then find an envy-free division as if we were
dividing a cake. But when n ≥ 3 it is no longer the case that all envy-free divisions
are undominated. Gale asked whether there must exist a fair division (i.e., both envy
free and undominated). Brams and Barbanel [3] showed that a fair division always exists
when n = 2. They also found an example with n = 4 in which no fair division exists, but
the example relies on measures that are not absolutely continuous with respect to each
other—that is, some pieces have positive value to some players and zero value to others.
Brams, Jones, and Klamler [4] extended the problem to the case of proportional divisions
among players with unequal entitlements, and showed that in this extended problem, fair
divisions might fail to exist. But for n ≥ 3, absolutely continuous measures, and equal
entitlements, Gale’s question has remained open.

In this paper we answer Gale’s question in the negative in the case of n = 3. We present
a set of three measures on a pie that are absolutely continuous with each other and with
respect to area, and we show that no allocation among players with these measures can
be both envy free and undominated. The lesson of the pie-cutting model, therefore, is
exactly opposite to the lesson of the cakes: fair divisions are not always possible.

2 The example

In all sections we represent the pie as the interval [0, 18] with the endpoints identified.
Points in the interval are defined mod 18. We call the players A, B, C, and call their
measures vA, vB, vC (or generically, just vi). For describing the measures we partition the
pie into 18 sectors [0, 1], [1, 2],. . . ,[17, 18]. Each measure is uniform over each segment, so
to the describe the measures it suffices to list the values vi([k, k + 1]) for each player and
each sector.

With these conventions in place, here are the measures that form the example:
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0 3 6 9 12 15 18

vA 130 100 69 131 70 100 100 70 131 69 100 130 60 100 100 100 100 60
vB 100 100 115 5 100 100 100 100 100 100 100 100 100 100 100 100 100 100
vC 100 100 100 100 100 100 100 100 115 5 100 100 100 100 100 100 100 100

For the proof that no envy-free, undominated allocation is possible the reader may skip
to section 5. The intervening sections are intended to motivate the example.

3 The failed proof

We begin with a (false) proof that an envy-free, undominated allocation always exists.
We consider only the case of n = 3, but the proof fails just as badly for larger n.

For any allocation {SA, SB, SC} we define a value vector (vA(SA), vB(SB), vC(SC)).
From the value vector we extract the sum, s = vA(SA)+vB(SB)+vC(SC), and a proportions
vector, (vA(SA)/s, vB(SB)/s, vC(SC)/s).

The possible proportions vectors form a simplex as shown in Figure 1. Formally the
simplex is

S = {(a, b, c) | a, b, c ≥ 0 and a + b + c = 1 }.

The vertices represent allocations of the whole cake to one player. These results are easily
established:

1. Every vector (a, b, c) ∈ S is the proportions vector of an undominated allocation.

2. In every undominated allocation, at least one player is satisfied (not envious).

(0,1,0) 
 B

C
(0,0,1)   

A
(1,0,0) 

Figure 1: The simplex of proportion
vectors

B

CA

Figure 2: The sets KA, KB, KC overlap
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Now consider the sets

KA = {(a, b, c) | There is an allocation with proportions vector (a, b, c)

in which player A is satisfied }

and the corresponding sets KB, KC for players B and C. From the second result above,
these sets cover S: that is, KA ∪ KB ∪ KC = S. Further, KA contains the vertex (1, 0, 0)
(because A is clearly satisfied with the whole cake) but does not intersect the side opposite
(1, 0, 0) (because in each of those allocations, A has an empty piece). Similar facts hold
for KB and KC .

Under these circumstances, a topological lemma like the one used in [11] applies. It
implies that if the K’s are closed sets, they must have a point in common (Figure 2). That
point might represent an undominated allocation in which all three players are satisfied.
Might that imply that there is an envy-free, undominated allocation?

So goes the proof.
It has flaws. To begin with, the K’s need not be closed sets. But the larger flaw is

that it doesn’t prove the result we want. It actually “proves” that there is a proportions
vector such that every player is satisfied by some undominated allocation having that
proportions vector. But there might be two or more undominated allocations for the
same proportions vector; then A might be satisfied with one of the allocations, while
B and C are satisfied with another one. There might then be no single undominated
allocation that satisfies everybody.

This tells us one feature we should look for in a counterexample: there should be at
least one instance of two different undominated allocations with the same proportions
vector, which satisfy different sets of players.

Our strategy in building an example is to start with a case in which there is only one
proportions vector with envy-free allocations. In fact, it will have two different envy-free
allocations, but they will both be “brittle” in the sense that small modifications keep
them from being envy free. This situation is illustrated in Figure 3. (In general, envy-free
allocations are likely to be ubiquitous. We don’t want that to happen in our example,
because if there are many envy-free allocations, it is hard to keep them all from being
undominated.)

We’ll then add an overlay of additional allocations, as shown in Figure 4. The allo-
cations in the overlay have the same proportions vectors as the old ones, and dominate
them — including the old envy-free allocations.

We need to keep new envy-free allocations from arising on the overlay. We do this
by making B envy C and C envy A for all allocations in the overlay. These conditions
could be fixed by making A’s piece smaller, but at that point we let the overlay sink
below the former sheet, so that any new envy-free allocations would be dominated by
allocations in the original example. The edge where the overlay intersects the original
sheet is characterized by having two undominated allocations for each proportions vector.

In the next section we carry out this strategy, and build an example from the ground
up.
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(0,1,0) 
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(0,0,1)   

A
(1,0,0) 

Two envy-free 
allocations here 
(both brittle) 

Figure 3: First layer of allocations

(0,1,0) 
 B

C
(0,0,1)   

A
(1,0,0) 

O verlay 

Sinks below 
first layer 

Dominates envy-
free allocations 

Figure 4: Overlay layer

4 Building an example

We begin the construction with these three measures:

Version 1: Two brittle envy-free allocations

0 3 6 9 12 15 18

vA 100 100 100 100 100 100 100 100 100 100 100 100 90 90 90 90 90 90
vB 90 90 90 90 90 90 100 100 100 100 100 100 100 100 100 100 100 100
vC 100 100 100 100 100 100 90 90 90 90 90 90 100 100 100 100 100 100

In this version, suppose that cuts are made at 0, 6, and 12. Then each player is indifferent
between two pieces: A is happy with [0, 6] or [6, 12], B is happy with [6, 12] or [12, 18],
and C is happy with [12, 18] or [0, 6]. This gives us two envy-free, undominated solutions:

• Plan 1: [0, 6], [6, 12], [12, 18] to A, B, C respectively.

• Plan 2: [6, 12], [12, 18], [0, 6] to A, B, C respectively.

Each of these allocations delivers values of 600, 600, 600 to the respective players,
which is clearly the best that can be done. But since each allocation has three players at
the very edge of envy, these allocations are “brittle” as desired—small changes are likely
to destroy their envy-free character.

Unfortunately, there are more envy-free allocations than these, and they are not brittle.
Any allocation of the form [x, 6+x], [6+x, 12+x], [12+x, x] with 0 ≤ x ≤ 6 is envy-free
and undominated. In order to kill off most of these allocations, we add some “decorations”
to A’s measure:

Version 2: Weakening some of the extra envy-free allocations
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0 3 6 9 12 15 18

vA 130 100 70 100 100 100 100 100 100 70 100 130 90 90 90 90 90 90
vB 90 90 90 90 90 90 100 100 100 100 100 100 100 100 100 100 100 100
vC 100 100 100 100 100 100 90 90 90 90 90 90 100 100 100 100 100 100

This change causes most of the unwanted allocations to be undesirable, because A will
not want to accept one of the “70” sectors without the nearby “130” sector. The other
allocations can still be adjusted to make them envy-free, but they are not likely to be
undominated.

Before moving on, we modify the “killer sectors” in all three measures. This change
adds flexibility that we will need later.

Version 3: Adjusting the killer sectors

0 3 6 9 12 15 18

vA 130 100 70 100 100 100 100 100 100 70 100 130 60 100 100 100 100 60
vB 100 100 100 20 100 100 100 100 100 100 100 100 100 100 100 100 100 100
vC 100 100 100 100 100 100 100 100 100 20 100 100 100 100 100 100 100 100

Now notice that there is one extra envy-free solution that we haven’t eliminated:

• Plan 3: [3, 9], [9, 15], [15, 3] to A, B, C respectively.

We’ll preserve this allocation, and use it to dominate the allocations from Plan 1 and
Plan 2. To do this, we freeze it in place with another set of “decorations,” and then shift 1
extra point of A’s measure into each sectors [3, 4] and [8, 9] to make them more attractive.

Version 4: Beefing up the “Plan 3” allocation

0 3 6 9 12 15 18

vA 130 100 69 131 70 100 100 70 131 69 100 130 60 100 100 100 100 60
vB 100 100 100 20 100 100 100 100 100 100 100 100 100 100 100 100 100 100
vC 100 100 100 100 100 100 100 100 100 20 100 100 100 100 100 100 100 100

Now Plan 3 offers values of 602, 600, 600 to the respective players, so it dominates both
Plan 1 and Plan 2. Note that any modification to Plan 3 that alters A’s piece by more
than a trivial amount will reduce its value to A below 602, which can keep it from being
undominated.

But as it stands, Plan 3 is both envy free and undominated. Finally, we modify it by
making B envy C and C envy A.

Version 5, final: Making players envious in Plan 3

0 3 6 9 12 15 18

vA 130 100 69 131 70 100 100 70 131 69 100 130 60 100 100 100 100 60
vB 100 100 115 5 100 100 100 100 100 100 100 100 100 100 100 100 100 100
vC 100 100 100 100 100 100 100 100 115 5 100 100 100 100 100 100 100 100

Of course these instances of envy could be corrected — but only by significant alterations
of A’s piece, which would cause Plan 3 to be dominated. So, the example is now complete.

Of course, we need to prove these claims.
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5 The proof

In this section we proof that these measures (see Section 2, or Version 5 above) do not
permit any envy-free, undominated allocation.

In outline, the proof is as follows. First, since the densities are nearly uniform, any
envy-free allocation must have pieces of roughly equal length. Second, any undominated
allocation with suitable piece lengths must have vA(SA) + vB(SB) + vC(SC) ≥ 1800, or
else it would be dominated by some other allocation (that we construct explicitly).

Next, there are only three plausible ways to achieve this total:

• Plan 1: [0, 6], [6, 12], [12, 18], or a slight modification;

• Plan 2: [6, 12], [12, 18], [0, 6], or a slight modification;

• Plan 3: [3, 9], [9, 15], [15, 3], or a slight modification.

In Plan 1, some instance of envy occurs unless the pieces all have length exactly 6, in
which case the allocation is dominated by [3, 9],[9, 15],[15, 3]. Plan 2 is symmetrical. In
Plan 3, either B envies C or C envies A, or A’s piece is reduced to the extent that the
allocation is dominated.

We give the proof in greater detail.

1. In any envy-free allocation, each piece has length ` satisfying 5.5 < ` < 7.
Proof: Each player’s valuation of the entire pie is vi([0, 18]) = 1720. It follows that

each player must value its own piece at at least 573, or it would necessarily prefer another
player’s piece to its own. By inspection, no piece of length ` ≥ 5.5 has value as great as
573 to any player, so each piece in an envy-free division must have length ` > 5.5. If any
piece were longer than 7, then some other piece would be too short, so we must always
have 5.5 < ` < 7. 2

2. In any allocation that is both envy free and undominated, the sum vA(SA)+
vB(SB) + vC(SC) must be at least 1800.

In general, we will refer to the quantity vA(SA) + vB(SB) + vC(SC) as the sum of the
allocation.

Proof: Let a, b, c satisfy a + b + c = 1800 and 5.5 < a, b, c < 7. We will show
that there is an allocation with (vA(SA) = a, vB(SB), vC(SC)) = (a, b, c). In particular,
the allocation is

SA = [0, a/100];
SB = [a/100, 18 − c/100];
SC = [18 − c/100, 18].
The values of vB on SB and of vC on SC are both constant at 100, so we have

vC(SC) = 100 (18 − c/100 − a/100) = b

and
vC(SC) = 100 (c/100) = c.
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The density of vA on SA is not constant, but its average is clearly 100 regardless of the
exact location of the right boundary of SA. Therefore

vA(SA) = 100 (a/100) = a

as required.
Any allocation that is envy-free and has sum strictly less than 1800 is dominated by

one of these allocations. 2

3. It follows that in any envy-free, undominated allocation, the values of the
pieces must average 100 per sector, as valued by the players that receive them.

4. In an envy-free, undominated allocation, B’s piece cannot include any part
of the sector [2, 3].

Proof: To average 100 per sector, B would have to avoid most of [3, 4] so B’s piece
would be roughly [14, 2+] or [15, 3]. In either case, either C or A would be stuck with
most of [9, 10], and the required average could not be maintained. 2

5. In an envy-free, undominated allocation, C’s piece cannot include any part
of the sector [8, 9].

Proof: If it did, then C’s piece would be roughly [3, 9], and A could not avoid being
stuck with one of the killer cells [12, 13] or [17, 18]. 2

6. Therefore, in any envy-free, undominated solution, B’s piece and C’s pieces
have values averaging at most 100 per sector to their respective owners. There-
fore A’s piece must also average at least 100 per sector.

7. By inspection, there are only three ways for A to accomplish this:

• Plan 1. SA = [0, 6 + x] where −1 < x < 1;

• Plan 2. SA = [6 + x, 12] where −1 < x < 1;

• Plan 3. SA = [3 + x, 9 + y] where |x| + |y| ≤ 2/31.

These plans can be completed as follows:

• Plan 1. [0, 6 + x], [6 + x, 12 + y], [12 + y, 18] to A, B, C, with −1 < x, y < +1;

• Plan 2. [6 + x, 12], [12, y], [y, 6 + x] to A, B, C, with −1 < x, y < +1;

• Plan 3. [3 +x, 9+ y], [9+ y, 15 + z], [15 + z, 3+x] to A, B, C, with |x|+ |y| ≤ 2/31
and −1 < z < +1.
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8. There is no envy-free, undominated allocation consistent with Plan 1.
Proof: The short reason is that any alteration to the boundaries causes A to envy

B, or B to envy C, or C to envy A. If the boundaries are left at 0, 6, 12 exactly, the
allocation is dominated by [3, 9], [9, 15], [15, 3].

For a formal proof, we explore the consequences of envy-freeness:

• vA(SA) ≥ vA(SB) implies
200x − Ky ≥ 0 (1)

where K is either 60 or 130 depending on the sign of x.

• vB(SB) ≥ vB(SC) implies
−100x + 200y ≥ 0. (2)

• vC(SC) ≥ vC(SA) implies
−100x − 100y ≥ 0. (3)

Adding twice (1) to (3) forces y ≤ 0 and adding (2) to twice (3) gives x ≤ 0. Now (3)
forces x = y = z = 0.

Therefore any envy-free allocation in Case I must be exactly [0, 6], [6, 12], [12, 18], with
the values to the players being exactly 600, 600, 600. But this allocation is dominated by
[3, 9], [9, 15], [15, 3], which delivers 602, 600, 600. 2

9. There is no envy-free, undominated allocation consistent with Plan 2.
This is symmetrical to Plan 1.

10. There is no envy-free, undominated allocation consistent with Plan 3.
Proof: The problem here is that, with no adjustments to the boundaries, B envies

C and C envies A. These conditions cannot both be fixed without reducing A’s piece,
but any sufficient reduction of A’s piece causes the sum to fall below 1800.

More precisely: Suppose that the left end of C’s piece is at least 15 (that is, z ≥ 0).
Then C’s piece is at most [15, 3+x] where x ≤ 2/31. Thus C’s valuation of C’s piece is at
most 600+100x ≤ 607. But C’s valuation of A’s piece is at least 615−100x+100y ≥ 608,
so C envies A.

Suppose on the other hand that z < 0. Then B’s valuation of B’s piece is at most
600 − 100y ≤ 604, while B’s valuation of C’s piece is at least 615 + 115x ≥ 611. So B
envies C. 2

We have completed the proof that these measures do not allow an envy-free, undomi-
nated allocation in any case.

6 A fresh problem

A pie-cutter has three blades, fixed at angles of 120 degrees. We can place its center
anywhere we like, and orient it as we please, as long as the blades remain vertical and
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their angles remain fixed. Given three players with preferences defined by absolutely
continuous measures, can we use the pie-cutter to find an envy-free allocation? Can we
find an allocation that is both envy free and undominated?

The blades form a Steiner tree, which suggests a generalization to more then three
players. Can a pie be divided fairly among n players, with piece boundaries that form a
Steiner tree? That is, that meet each other only at 120 degree angles?
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