MINICOURSE #8
MATHEMATICAL FINANCE

Walter Stromquist

Bryn Mawr College

walters@chesco.com

.

Atlanta, GA

January 5 and 7, 2005

Notes for Part B

NOBEL PRIZES FOR MATHEMATICS

AND MATHEMATICAL FINANCE

1990 — William F. Sharpe, Merton Miller, Harry Markowitz




(Portfolio optimization)

1994 — Reinhard Selten, John C. Harsanyi, John Nash




(Game theory)

1996 — James A. Mirrlees, William Vickrey




(Auctions, etc.)

1997 — Myron S. Scholes, Robert C. Merton  [Fisher Black]




(Option valuation)

Friday

(4)   Teaching a financial-mathematics class

(5)   Black-Scholes without the risk-neutrality assumption


-  The “arbitrage theorem” 



-  The two-branch model



-  Binomial trees



-  Equivalent martingales = option pricing systems

(6)   Mean-Variance Optimization



- Basic model



- Extensions:




Cash, and the “market portfolio”




The Capital Asset Pricing Model (CAPM)

Discussion

Evaluation
Math 225 at Bryn Mawr College, fall 2004
Introduction to Financial Mathematics
1.  Interest rates and present values ( ~ 2 weeks; Ross ch. 4 )

2.  Probability mini-course ( ~ 3 weeks: Ross ch. 1-2 )

3.  Modeling stock prices ( GBM; Ross ch. 3ff )
4.  Options.  Black-Scholes with risk-neutrality assumption.

5.  Black-Scholes without risk neutrality:


Arbitrage theorem (Ross)


2-branch model


binomial trees; connection to GBM

6.  Mean-variance optimization ( ~ 3 weeks )

The Arbitrage Theorem

States ( = possible futures ) are indexed by j = 1, …, n

Investments are indexed by i = 1, …, m

vi   =   price per unit, now, of investment i

aij   =   price per unit of investment i if state j occurs

Theorem:  Either…

(a) (arbitrage opportunity)  there exist  x1, …, xm  such that 





x1a1j + … + xmamj   >   x1v1 + … + xmvm      for all j,  OR


(b) (probability vector)  there exist  p1,…,pn  such that




pj ≥ 0  for all j;





p1 + … + pn  =  1;  and





vi  =  p1ai1 + … + pnain    for every i.
Proof (outline):     In  Rm,  identify the points corresponding to the columns of the matrix A  (one point for each state).  Let  C  be their convex hull.  

If the point  v = (v1,…,vm)  is contained in C, then it can be represented as a weighted sum of the columns of A.  That is, condition (b) occurs with the pj’s being the weights.

Otherwise, let  x = (x1,…,xn)  be the vector from  v  to the closest point in  C  to  v.  Then  x  makes an acute angle with any vector of the form




(aj1,…,ajm) – (v1,…,vm);


so the dot product of these vectors is positive, so condition (a) occurs for every  j.  //

General version (main theorem of mathematical finance):

Let  S  be any state space (set of possible futures), with some probability measure  P.


Consider some set of investments, whose future values depend on the state.


Then the following are in one-to-one correspondence:


--  Systems of prices for the investments that do not allow arbitrage opportunities.


--  Probability measures  Q  on  S  that are “equivalent” to P in the sense that Q and P have the same sets of measure zero.

If we pick a probability measure Q,  then the investment prices are given by expected future values with respect to Q. //

Interpretation:  


The market assigns prices based on expected values with respect to some “probability distribution” on future events.


This “probability distribution” is an artificial construct, and need not be closely related to actual probabilities of any kind.


Practitioners call these the “risk-neutral probabilities.”
In the case of GBM:  

We will find that, given (,  there is only one probability measure consistent with a given stock price.  It therefore determines the values of all options and contingent claims.
The two-branch model
Assume that a stock price is now  $100,  and that tomorrow it will be either  $120  or  $90.  (It is common knowledge that these are the only two possibilities.)
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A certain option contract pays  $10  if the stock price goes up, and  $0  if it goes down.  (For example, it may be a call option with K = $110.)

What is the price of that option now?

Argument by replication:

Consider the following portfolio:
 (1/3) share stock   –   $30.

If the stock goes up, the portfolio is worth  $40 – $30 = $10.

If the stock goes down, the portfolio is worth  $30 – $30 = zero. 


--> SAME AS THE OPTION IN EITHER CASE.


Since the option has the same payoff as the portfolio in every case, it must have the same current price as the portfolio:  $ 3 1/3.  //
Interpretation in light of the arbitrage theorem:


There is only one probability vector that is consistent with the stock price:  1/3 for the top branch, 2/3 for the bottom branch.


Therefore, all investments must be priced at their expected values using these probabilities.  //

Math of Finance Minicourse
January 7, 2005
MEAN-VARIANCE OPTIMIZATION

We want to invest  B  dollars in some mix of securities, in such a way as to maximize expected return and minimize risk.   ( Competing Objectives! )

Start by defining the choices available to us.  Let



xi = number of dollars we invest in security i  ( for i=1…N ).

We are free to choose values of  x1​,…,xN  subject to a budget constraint,

x1​ + … + xN  =  B,


and perhaps other linear constraints.  For today, assume that the only other linear constraints are non-negativity constraints:

xi ( 0    for  i = 1, …, N.
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A vector  x = ( x1 ​, … , xN )  satisfying these constraints is called a portfolio, or a feasible portfolio.  The feasible portfolios form a compact, convex subset of  RN  called the feasible set.

Restating the problem: we want to choose a portfolio that, among feasible portfolios, maximizes expected return and minimizes risk.

INPUTS TO MEAN-VARIANCE OPTIMIZATION

We assume that the mean returns for the securities, and all covariances, are known.  Some notation:


Ri  =  Return on  i-th security (a random variable)



   ( Thus, our profit from investing  xi  in the  i-th security is  xiRi ,  



      which is also a random variable. )


(i  
=  E ( Ri )  =  expected return


(i 
=   standard deviation of  Ri

(i2 
= Var ( Ri ) = variance of  Ri

(ij 
=   covariance of  Ri  and  Rj   ( note that  (ii  is the same as  (i2. )

(ij 
=   correlation of  Ri  and  Rj   ( so that  (ij = (ij(i(j )

With this notation, we can write the return from the portfolio x = ( x1 , … , xN )  as a random variable:



P(x)  =  x1R1 + … + xNRN .

We want to maximize the mean of  ((x)  and minimize its variance.  Thus, our two objectives involve



p(x)  =  E(P(x))  =  x1r1 + … + xNrN    (to be maximized)


and



Var (x) =  Var(P(x))  =   
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       (to be minimized).

(It would be just as good to minimize the standard deviation, ((x)=
[image: image2.wmf]Var(x)

.)

Let’s see which combinations of  ( Var(x), ((x) )  are possible as  x  ranges over the set of feasible portfolios:
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The yellow image of this map is compact, since it is a continuous image of a compact set.  It isn’t usually convex.

We have seen that a segment on the left maps to a parabola on the right (opening to the right).  This is true of all segments (barring degeneracies).  Thus the left edge of the yellow image is convex (that is, the edge is concave to the right) and that’s all we need.

The upper-left edge of the yellow image is called the efficient frontier.  Each point on the frontier represents a portfolio that…


(a)  Maximizes  p  for a given value of the variance  Var,  or


(b)  Minimizes  Var  for a given expected return  p.


We call these efficient portfolios.

Our model tells us that we should choose an efficient portfolio, but it offers no guidance as to which efficient portfolio we should choose.  That depends on the investor’s taste for risk.

Therefore, a reasonable statement of our problem is to find portfolios corresponding to all points on the efficient frontier.

MATRIX FORMULATION

Introduce column vectors  x = ( x1 , … , xN )T  and  r = ( r1 , … , rN )T,  and the vector of all 1’s,  e = ( 1 , … , 1 )T.    Also, write the covariance matrix as
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Now the constraints can be written as



xTe  =  B

(budget constraint)  and



x     (   0  

(non-negativity).

The various objective functions become



Mean:   



p(x)    =   xTr ;



Variance:



Var(x) =   xT(x ;  and



Standard deviation:

((x)     =   
[image: image5.wmf]Var(x)

.
FORMAL STATEMENTS

We could state the problem formally in either of two ways.

For each K,




Maximize







p = xTr




by choice of  x  subject to







xT(x ( K,







xTe  =  B,







x     (   0.

Or,

For each L,




Minimize







Var = xT(x




by choice of  x  subject to







xTr  (  L,







xTe  =  B,







x     (   0.

But there’s a better way:

For each  (  in [0, +(]




Maximize







( = ( xTr – (1/2) xT(x




by choice of  x  subject to







xTe  =  B,







x     (   0.

Each value of  (  corresponds to one point on the efficient frontier.

For each  (,  this is a quadratic programming problem (“an instance of a quadratic program”).  The only sense in which it is not entirely routine is that we are to solve the problem for a family of  (’s,  and it is more efficient to solve the family together than to apply quadratic programming algorithms separately for different values of (.
WHAT IF THERE IS CASH?

(  At this point it is convenient to introduce a simplification.  Since the entire problem scales with  B,  we might as well assume that B = 1.  The budget constraint becomes

x1​ + … + xN  =  1,


and we can interpret xi as the fraction of our portfolio invested in security  i.

( Also, at this point we will make a sudden change:  We will use  ((x)  in place of  Var(x)  in our graphs of the efficient frontier.  Clearly it makes no difference whether we  minimize  ((x)  or Var(x).  Also, the graph of the efficient frontier looks the same:  it is still strictly concave towards the right.  )

Introduce a new asset, indexed by i=0, with a guaranteed return of  r0.


That is:

(02   =  0,  and





(i0    =  0   for each  i = 1, …, N.


Call the new asset cash, and call  r0  the risk-free rate.  The other assets are called risky assets.
We can borrow or lend as much cash as we want at the risk-free rate.  That is, there is no non-negativity constraint for  x0 — the fraction of our portfolio that is in cash can be positive or negative.

What does this do to the efficient frontier?

First, we add the point  ( 0, r0 )  corresponding to the all-cash portfolio.

Suppose we keep a fraction  x0  of our portfolio in cash, and allocate the remaining fraction  (1-x0)  to risky assets in proportion to M, where M was a feasible portfolio under the old formulation.  Then:



( ( x )  =  x0r0  +  (1-x0) ( ( M )



( ( x )  =              (1-x0) ( ( M ).


In a  (-(  graph, this lies on a line joining the all-cash portfolio to the portfolio  M.   ( If  x0 < 0,  it lies on the same line but beyond  M.)

So the new set of possibilities  ( (, ( )  is the cone connecting the all-cash point with the original image.  The new efficient frontier is the ray from  (0, r0)  through the point realized by a particular portfolio which we will call M*.
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Note now that there is a unique optimal portfolio M* of risky assets.  We exercise our risk preference only by deciding how much cash to hold, and how much of the optimal portfolio M*.

M* happens to be the portfolio that maximizes the Sharpe Ratio,
Sharpe Ratio  =  
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CAPITAL ASSET PRICING MODEL

Now assume that everyone agrees on the inputs  r  and  (.  Then everybody calculates the same M*.  Everybody holds the same mix of non-cash securities.  Investors differ only in how much cash they hold, and how much of M*.

M* must necessarily be a proportional share of all the securities that exist.  We call it the market portfolio.
Since every security is in M*, it follows from the solution of the quadratic program above (and lots of algebra) that every security satisfies this equation:






ri = r0 + (i  (rM – r0) ,


where rM = ((M*).   

The coefficient  (i  is the same as the regression coefficient in the equation





Ri = (i  RM* + (.


That is,
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This is a theory of what expected returns must necessarily be, if we accept all of the assumptions made so far.
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